Resolving Extensions of Finitely Presented Systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving Extensions of Finitely Presented Systems

In this paper we extend certain central results of zero dimensional systems to higher dimensions. The first main result shows that if (Y, f) is a finitely presented system, then there exists a Smale space (X,F ) and a u-resolving factor map π+ : X → Y . If the finitely presented system is transitive, then we show there is a canonical minimal u-resolving Smale space extension. Additionally, we s...

متن کامل

Finitely Presented Extensions by Free Groups

We prove here that a finitely presented group with a free quotient of rank n is an HNN-extension with n stable letters of a finitely generated group where the associated subgroups are finitely generated. This theorem has a number of consequences. In particular, in the event that the free quotient is cyclic it reduces to an elementary and quick proof of a theorem of Bieri and Strebel. 1. Finitel...

متن کامل

Quasi-Exact Sequence and Finitely Presented Modules

The notion of quasi-exact sequence of modules was introduced by B. Davvaz and coauthors in 1999 as a generalization of the notion of exact sequence. In this paper we investigate further this notion. In particular, some interesting results concerning this concept and torsion functor are given.

متن کامل

Finitely Presented Infinite Graphs

This thesis contributes to the study of families of finitely presented infinite graphs,their structural properties and their relations to each other. Given a finite alpha-bet Σ, a Σ-labeled infinite graph can be characterized as a finite set of binaryrelations (Ra)a∈Σ over an arbitrary countable domain V . There are many ways tofinitely characterize such sets of relations, eithe...

متن کامل

Finitely Presented Heyting Algebras

In this paper we study the structure of finitely presented Heyting algebras. Using algebraic techniques (as opposed to techniques from proof-theory) we show that every such Heyting algebra is in fact coHeyting, improving on a result of Ghilardi who showed that Heyting algebras free on a finite set of generators are co-Heyting. Along the way we give a new and simple proof of the finite model pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Applicandae Mathematicae

سال: 2013

ISSN: 0167-8019,1572-9036

DOI: 10.1007/s10440-013-9811-x